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The Monte Carlo simulation of the charge-transfer process between a single-charged plasma 
ion and a neutral atom is considered. The main point examined is the sampling of the velocity 
of the emerging neutralized particle when a shifted Maxwellian velocity distribution is 
assumed for the plasma ions. An algorithm based on a rejection game is given in order to 
sample from the velocity distribution of those ions which undergo the reaction. The motion of 
the targets makes the study of this process by no means easy: The possibility is pointed out 
that a sampling technique, combined with approximations introduced to compute average 
cross sections, may destroy the internal consistency of the stochastic model. 

1. INTRODUCTION 

In the Monte Carlo approach to neutral-atom transport in magnetically confined 
fusion plasmas, as for example in studies of neutral-beam injection or plasma 
recycling, one is faced with the problem of simulating the charge-transfer reaction 
between single-charged ions and neutrals. It may be assumed that the ionized atom 
undergoing this type of process loses its charge, becoming itself a neutral, but retains 
its velocity [I]. The main purpose of this work is to discuss the sampling of this 
velocity assuming that the plasma ion velocities are distributed according to a shifted 
Maxwellian. An approximation which is frequently made is that of selecting the 
velocity of the emerging neutral from the distribution of the plasma ions [2,3]. This 
does not take into account that, although the individual velocities of the collided ions 
remain unchanged immediately after neutralization, the velocity distribution of these 
collided ions is generally not the same as that of the plasma. 

To introduce all the terms of the problem, the determination of the cross sections 
in the form needed for the simulation is first discussed in Section 2. This matter is by 
no means trivial, due to the motion of the target ions. In Section 3, velocity slection is 
discussed and a rejection algorithm is given in order to sample from the correct 
distribution. In this way, besides avoiding large probability tables, statistical weights 
originated by certain sampling techniques are not needed either. As will be pointed 
out, these weights, if combined with approximations introduced to compute average 
cross sections, could make the mathematical model inconsistent. In Section 4. 
numerical examples are discussed. 
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2. COMPUTING THE CROSS SECTIONS 

To track histories of neutral particles in a plasma, a medium of moving targets, 
one needs the cross sections of all possible interactions to be given as local functions 
only of the velocity v,, of the tracked particle. From these cross sections, the collision 
point and the type of reaction can be selected in standard ways [4, 51. Cross sections 
are instead usually given as functions of the relative projectile-target velocity 
u, = Iv - v,I, where v is the ion velocity. Therefore we shall first discuss the problem 
of obtaining the cross sections in the form required by the mathematical method used. 

Assume for the sake of simplicity that the plasma contains only one species of ion, 
with mass m and absolute temperature T, and that the projectile can undergo just one 
type of reaction, characterized by the cross section a(~,). Then one defines an 
“effective” cross section o*(vO) so as to preserve the reaction rate between projectile 
and target as follows: 

where the average is to be performed over the velocity distribution of the targets. We 
consider the case where the plasma, whose ions have a background Maxwellian 
distribution M(v’), flows with a constant drift velocity a. Then the velocity 
distribution of the target ions is a shifted Maxwellian M,(a, v) given by 

In fact, with v = v’ + a, 

M,(a, v) = M(v - a). (2) 

M&a, v) dv = M(v’) dv’ = M(v - a) dv. 

Making use of Eq. (2), the rate coefticient in Eq. (1) can be written as 

(@4 u,> = 1 u(q) Qf(v - a) dv, (3) 

where integration is to be carried out over the whole velocity space. 
Since numerical integration of Eq. (3) at each flight of the tracked particle is out of 

the question, one must have recourse to many-dimensional fittings, or to interpolation 
in large precomputed many-entry tables, or must introduce a drastic approximation 
to solve Eq. (3). For instance, one can substitute the relative velocity U, with an 
average velocity v,? which is in some way representative of the velocity population. In 
particular, to simplify the calculations, we can take 

with 

u,* = (uy 

w = j ufM(v -a) dv. 

(4) 
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Since the explicit form of M(v’) is 

M(v’) = M(?&) M(u;,) M(d), 

with 

M(w) a exp(-mw*/2kr), 

then the integral above becomes 

u: + (a, - uox)J2 + *-* } M(u:) M(u;) M(u;) dv’ 

= (u’)~ + la - vo12 = 3kT/m + la - v,,j*, 

where (.)t, denotes the average over the background Maxwellian M. Note that cross 
terms of the type 

vanish, being averages of the odd function u: over the even function M(ui). 
Another possible choice could be 

11; = (@I)’ + up*, 

as in [2] where, however, no drift velocity a is considered. 
In any case, given a representative velocity u,*, Eq. (1) reads 

a*(t$)) = a(uf) 5, 
0 

(5) 

and finally yields the required cross sections in a form suitable for the Monte Carlo 
simulation. 

3. CHARGE-TRANSFER SIMULATION 

Let us now assume that a charge-transfer reaction between a neutral with velocity 
v. and a single-charged ion has been chosen by taking into account the probabilities 
of all possible reactions, i.e., on the basis of their respective cross sections computed 
as shown in the previous section. Furthermore, let ucX be the charage-transfer cross 
section for the selected ion species. To simulate the charge-exchange mechanism, one 
takes into account the assumption (see Section 1) that the velocity v of the emerging 
neutral after the reaction is that of the collided ion. Let us also denote by q(~,) the 
rate coefficient of this reaction, 
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Since the number of charge exchanges due to the travelling neutral per unit time and 
unit volume in the velocity element dv about v is n,q(u,) Ms(a, v) dv, with n, the 
density of the ion species chosen, then v is to be selected from the probability density 
function (pdf) 

d(v) = 4(h) M,(a, 4 

j du,) MS@, v) dv ’ 

Using Eqs. (2), (3), and (I), we have 

d(v) = dur) Ms(a9 ‘) 
4*(hJ ’ (6) 

where q*(v,) = a,*,(~~) uo. 
Equation (6) shows that the selection of v simply from the pdf of the ions before 

the collision (as in [2,3]) does not take into account the fact that the rate coefficient 
operates as a selective filter. Only if a,,(v) has a l/v-behavior would the choice from 
M, not introduce any approximation. 

Velocities could be sampled from pdf (6) by storing large tables in the computer 
memory, these depending on the local ion-temperature, on the velocity of the neutral 
relative to the plasma drift and on the ion species. 

A correct choice of v from density (6) could also be performed by an “importance 
sampling” [4]. For example, choose v from M, and apply the statistical weight 

w  = d~,)/q*(bl) (7) 

to this choice (a scaling factor of this type is used in [6]). This method requires 
highly accurate knowledge of the normalization factor. Indeed, if the normalization 
integral q*(v,) is not accurately computed (for example, if the Maxwellian population 
has been substituted by a unique representative velocity for computation of the 
average cross section, as in the numerical samples of the next section), then the 
function d(v) is no longer normalized to unity and the internal consistency of the 
simulation is lost. By using in this case the weight (7), particles are erroneously 
created or destroyed during the history according to whether the normalization 
constant adopted is less or greater than the true one, and the balance between the 
physical events considered no longer closes, making infer alia impossible control of 
the correctness of the calculation (whereas an assumption like Eq. (5), when used to 
determine free paths or the reaction type, makes the mathematical model approximate 
but not inconsistent). 

Knowledge of the normalization constant in Eq. (6) and the use of large tables can 
be avoided by a “rejection technique,” as follows. Assume that q(v,) is bounded and 
let 

G = max q(u,) 
1’7 
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with U, ranging over the velocity space of the problem. Equation (6) can now be 
written as 

d(v) cc $$ M,(a. v), 

and d(v) can be regarded as proportional to the product of a pdf (M,) by a 
probability (q/G < 1). One then selects v out of M, by choosing a velocity v’ 
isotropically from M(v’) (see, e.g., [7] for a Maxwellian energy), and by adding a; 
this velocity v = v’ + a is accepted only if a number c, chosen uniformly in (0, l), is 
such that c < q/G, otherwise the whole procedure is repeated by selecting a new 
velocity from M,. 

Thus, the probability of accepting a velocity in the element dv about v is M, dv 
multiplied by the probability q/G, as required. 

Any number G’ > G could be used in the rejection game, but efficiency (ratio 
between accepted and sampled velocities) would decrease. 

If q(u,) is unbounded, then a suitable velocity cut-off is needed. In this case G 
could be computed as the maximum of q for 0 < E, < aT, E, being the neutral 
kinetic-energy corresponding to v,, T the local plasma temperature and cz a numerical 
coefficient. Note that if the plasma can be subdivided into piecewise homogeneous 
regions, the value of G in each region depends only on the interacting particle species. 
The choice a = 30 (ensuring a fair game for practically all velocities), together with 
definition (4) and a piecewise homogeneous plasma subdivision, was adopted for 
hydrogen isotopes in computations of neutral transport in poloidal divertors [S] 
where the efficiency of the rejection game turned out to be about 0.5. 

4. NUMERICAL EXAMPLES 

We now compare the performance of the rejection technique (RT) proposed in this 
paper with the Maxwellian sampling approximation (MSA) and an importance 
sampling technique (ET) which uses the weight (7) together with the crude approx- 
imation of the representative relative velocity (4). 

As a first example, let us consider the injection of a monoenergetic beam of 
neutrals at 3 eV into a Maxwellian plasma at temperature 25 eV, a typical situation 
.of particle recycling in diverted plasmas. It is assumed that the properties of the 
plasma do not change in time, that no drift velocity is present and that both the beam 
and the plasma are composed of equal parts of deuterium and tritium, modelled as a 
single hydrogenic species with mass 2.5. Charge-transfer cross sections are computed 
according to empirical formulas proposed in [9]. To isolate the effect of the charge- 
transfer process an infinite medium is considered so that effects of wall interactions 
are avoided. Finally, ionization will not, for the moment, be considered. 

The distributions of the energy E of the neutrals after one or more charge-transfer 
collisions computed by RT are given in Fig. 1. The Maxwellian is represented in the 
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FIG. 1. RT-computed energy distributions of the neutrals after charge-transfer process. Plasma at 
25 eV, neutrals injected at 3 eV (-, Maxwellian; ---, after the first collision; . . after n = 2 + 10 
collisions). 

same figure to show the difference from the plasma ions distributions. Of course, 
method MSA reproduces this Maxwellian at each collision. A measure of the distance 
of the distribution (6) from the Maxwellian is given in terms of the mean value I? 
quoted for each distribution. Histories were followed up to n = 10 collisions, but no 
appreciable difference was observed between the distribution corresponding to n = 2 
and n = 3 f 10. The efficiency of the rejection game was 0.37 at the first collision 
and 0.45 for n = 2 + 10. 

Profiles obtained by IST were the same as those obtained by RT, but the approx- 
imate computation of the normalization factor q*(u,) introduced a bias which, in this 
case, was equivalent to an absorption of particles. Figure 2 shows the devastating 
effect of this approximation on the beam intensity, I, whose initial value was I, = 1: 
about 6 % of the travelling neutrals “disappear” from the balance at each charge- 
transfer collision, although no ionization has been considered. 

Introduction of ionization does not produce any effect on the energy distribution, 
because hydrogenic species have a l/v electron ionization cross section. In our 
example, this new process would only reduce the neutral population by about l/3 at 
each collision. 

As a second example we consider the somewhat opposite situation encountered in 
problems of plasma heating by neutral injection: a neutral beam at 160 keV is 

+ + + 
0.5 ,1.~II~,.+ 

1 5 10 coGions 

FIG. 2. Bias induced in the intensity of the neutral beam by IST vs collisions undergone (+, first 
example; 0, second example). 

58l/52/1-9 
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0 L..-, .----12E(keV) 
0 4 a 

FIG. 3. RT-computed energy distributions of the neutrals after charge-transfer processes. Plasma at 
5 keV, neutrals injected at 160 keV (-, Maxwellian; ---. after the first collision; ..., after n = 2 + IO 
collisions). 

injected into a Maxwellian plasma at the temperature of 5 keV, all other conditions 
being the same as in the previous example. 

The RT-computed energy distributions are shown in Fig. 3 and are compared to 
the MSA represented by the Maxwellian. A smaller distortion is observed in this case. 
The RT efficiency was 0.14 for the first and 0.81 for further collisions. 

The bias introduced by IST is given in Fig. 2 and this time it appears as an initial 
“creation” of particles, with I, multiplied by the factor 1.34 after the first collision, 
followed by a “disappearance” of neutrals at the rate of about 7 % at each collision 
(we recall that for E > 15 keV, ucX drops rapidly and so, although in our case the 
beam energy prevails on the average Maxwellian energy, w is sensitive even to small 
variations of ur). 

Ionisation (both by electrons and by ions) does not change the distributions in this 
case either, and its introduction produces an attenuation of the beam by about l/6 at 
each collision. 

From the examples above we may conclude that the energy of neutrals emerging 
from the charge-transfer collision may be rather different from that of plasma ions, 
due to a non-l/v, trend of u,,(u,). Both RT and importance sampling allow selection 
of the new energy from the correct distribution. However, the use of weights in 
importance sampling techniques may be dangerous when the average reaction rates 
are not correctly calculated. Recourse to tabulation could ensure better knowledge of 
the reaction rates and avoid the inconsistency, provided the interpolation error be 
negligible. 

5. CONCLUSIONS 

Monte Carlo simulation of particle transport in a medium of moving targets like 
that examined in this work often requires drastic approximations for the deter- 
mination of cross sections necessary to sample free paths, reaction types, and motion 
parameters after a reaction. For determination of the energy and direction of the 
neutral originated by a charge transfer from a plasma ion to a neutral atom, we have 
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seen that some of these approximations could destroy the internal consistency of the 
mathematical model. It has been shown that this undesirable feature may be avoided 
by having recourse to a rejection algorithm. 
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